Enum SetupValueEc2
- Namespace
- IdeaRS.OpenModel.Concrete
- Assembly
- IdeaRS.OpenModel.dll
Setup value types Ec2
public enum SetupValueEc2
Fields
AllowCheckInAgeLess3Days = 152
-
true to allow check in concrete age less than 3 days
AlphaCw = 32
-
AlphaCw
AnchorageDetailType = 122
-
anchorage of reinforcement according to type
BLRPRecisionCheckValue = 201
-
precision of bridge load rating - check value
BentUpBarsReduction = 154
-
reduction coefficinet of bent-up bars
CalculateShrinkage = 205
-
calculate influence of shrinkage to stiffnesses
CalculateSrMaxAccUserSettings = 135
-
sr,max, is calculated according to user
CalculationOfStressLimitationK1 = 207
-
calculation of stress limitation k1
CalculationOfStressLimitationK2 = 208
-
calculation of stress limitation k2
CalculationOfStressLimitationK3 = 209
-
calculation of stress limitation k3
CheckCrackedCss = 74
-
Check cracks during shear calculation
CheckCrossSectionCrackedIfOneCracked_7_2_Chapter = 102
-
switch if the cross section should be calculated as cracked
CoeffCrdc = 28
-
CoeffCrdc
CoeffK1 = 29
-
CoeffK1
CoeffKl = 49
-
lateral shear - coefficient k (6.2.4 (6))
CoeffKp = 33
-
CoeffKp
CoeffNi = 104
-
strength reduction factor
CoeffNi1 = 31
-
CoeffNi1
CoeffNi1_EN2_2 = 183
-
coeff ni1 for EN2-2
CoeffVmin = 30
-
CoeffVmin
CoefficientOfTensionConcrete = 195
-
coefficient witch reduce the tension strength
CracWidthNationalAnnex = 160
-
use some annex specialities in common eurocode
CracksPassThrough = 159
-
CracksPassThrough
CrossSectionCrackedPlate = 134
-
on - the cross-section is calculated always as cracked
DecompressionLimit = 77
-
The decompression limit requires that all parts of the bonded tendons or duct lie at least 25 mm within concrete in compression for 1992-1-1
DecompressionLimit_2 = 78
-
The decompression limit requires that all parts of the bonded tendons or duct lie at least 25 mm within concrete in compression for 1992_2
DecompressionLimit_3 = 167
-
NCI re 7.3.1 (5) In order to keep within the decompression limit, it is required that the concrete surrounding the tendon is in compression over a width of 100 mm or 1/10 of the depth of section (whichever is greater). Stresses are to be checked in state II.
DetailingBracketMethodType = 120
-
calculation method of transversal reinforcement
DivisionStrain = 70
-
Division of the plane interaction diagram
EndOfCuring = 71
-
The age of the concrete (days) at the beginning of drying shrinkage (or swelling) in days. Normally this is at the end of curing.
Equation629 = 171
-
Equation 6.29 acc. to DIN NCI re 6.3.2 (4)
Equation631 = 172
-
Equation 6.31 acc. to DIN NCI re 6.3.2 (5)
FatigueJointCohesion = 175
-
Under fatigue or dynamic loads, the values for c in 6.2.5 (1) should be halved.
FatigueMethod = 133
-
6.8.7 Verification of concrete under compression or shear
FindOnly2DPlaneDeformation = 196
-
FindOnly2DPlaneDeformation
HighStrengthConcrete = 163
-
High strength concrete for DIN NCI re 3.1.2 (6)
ImperfectionDirection = 110
-
direction of imperfection for second order effect
IncreaseJointResistance = 170
-
the bearing capacity of the reinforcement crossing the joint due to shear friction (third term of the equation) may be increased to become ρ fyd (1,2 μ sin α + cos α).
InnerPerimeter = 164
-
Inner perimeter for DIN NCI re 3.1.4 (5)
InteractionDiagramCheckType = 9
-
InteractionDiagramCheckType
InteractionDiagramDivision = 112
-
division of interaction diagram for export
InteractionDiagramExportType = 146
-
type of interaction diagram for export
InterpolationCurve = 111
-
type of interpolate curce
IsSetMrForULSMNKappaDiagram = 156
-
IsSetMrForULSMNKappaDiagram
IsSetPrecissionForNullForces = 147
-
settings if null forces are checked with some precissions
IterationPrecission = 7
-
Iteration Precission
IterationSteps = 8
-
Iteration Steps
JointShearStressType = 138
-
Type of shear stress calculation
LimitCheckValue = 0
-
The limit check value, when check is over - check is not satisfactory
LimitDeflectionAdvanced = 106
-
limit value of deflection for deflection requrement advanced
LimitDeflectionNormal = 105
-
limit value of deflection for deflection requirement normal
LimitDeflectionValue = 108
-
limit value as value
LimitLeverArm = 165
-
Limit for lever arm acc. to DIN NCI re 6.2.3 (1)
LinearStiffnessForDeflection = 109
-
linear stiffness for deflection calculation - only for debug
MaxBentUpReinfDist = 178
-
maximum longitudinal spacing of bent-up bars
MaxDisplayCheckValue = 1
-
The infinity check value. This will be displayed when the check value equals to infinity or check wasn't calculated.
MaxHorReinfDistWall = 83
-
Maximal spacing of horizontal reinforcement
MaxHorReinfDistWall_EN2_2 = 188
-
maximum horizontal long reinf distance for EN2-2
MaxLengthOfZone = 107
-
maximum length of zone to divide member for stiffness calculation
MaxLongReinfDist = 37
-
maximum long reinf distance
MaxLongReinfPercBeam = 35
-
maximum long reinf percentage
MaxLongReinfPercBeam_EN2_2 = 185
-
maximum long reinf percentage for EN2-2
MaxLongReinfPercColumn = 43
-
maximum long reinf percentage
MaxMainReinfDistSlab = 89
-
Maximal spacing of main reinforcement
MaxMainReinfDistSlab_EN2_2 = 186
-
maximum main long reinf distance for EN2-2
MaxMainReinfPercSlab = 87
-
Maximal reinforcement ratio of main reinforcement
MaxReinfDistDeepBeam = 85
-
Maximal spacing of reinforcement
MaxShearReinfDistBeam = 40
-
maximum shear reinf distance
MaxShearReinfDistColumn = 46
-
maximum shear reinf distance
MaxShearReinfDistSlab = 180
-
maximum longitudinal spacing of successive series of links for slab
MaxShearReinfPercBeam = 39
-
maximum shear reinf percentage
MaxShearReinfTransDist = 41
-
maximum shear reinf trans distance
MaxShearReinfTransDistSlab = 181
-
maximum transverse spacing of shear reinforcement for slab
MaxTransReinfDistSlab = 90
-
Maximal spacing of transverse reinforcement
MaxTransReinfDistSlab_EN2_2 = 187
-
maximum transversal long reinf distance for EN2-2
MaxVertReinfDistWall = 81
-
Maximal spacing of vertical reinforcement
MaxVertReinfPercWall = 80
-
Maximal reinforcement ratio of vertical reinforcement
MinAnchLenShear = 121
-
minimum anchorage length of shear reinforcement
MinDuctHorDist = 97
-
Minimal horizontal distance of ducts
MinDuctVertDist = 96
-
Minimal vertical distance of ducts
MinHorReinfPercWall = 82
-
Minimal reinforcement ratio of horizontal reinforcement
MinLongReinfDiamColumn = 44
-
minimum long reinf diameter
MinLongReinfDist = 36
-
minimum long reinf distance
MinLongReinfPercBeam = 34
-
detailing beam minimum long reinf percentage
MinLongReinfPercBeam_EN2_2 = 184
-
minimum long reinf percentage for EN2-2
MinLongReinfPercColumn = 42
-
detailing column minimum long reinf percentage
MinMainReinfPercSlab = 86
-
Minimal reinforcement ratio of main reinforcement
MinNoBarCircColumn = 45
-
minimum number of bars of long reinf
MinReinfPercDeepBeam = 84
-
Minimal reinforcement ratio
MinReinfPercDeepBeam_EN2_2 = 189
-
minimum long reinf percentage for EN2-2
MinShearReinfDiamColumn = 47
-
minimum shear reinf diameter
MinShearReinfDiamColumn_EN2_2 = 182
-
minimum shear reinf diameter EN2-2
MinShearReinfPercBeam = 38
-
minimum shear reinf percentage
MinShearReinfPercSlab = 179
-
Minimal shear reinforcement percentage for slab
MinTendonHorDist = 95
-
Minimal horizontal distance of tendons
MinTendonVertDist = 94
-
Minimal vertical distance of tendons
MinTransReinfPercSlab = 88
-
Minimal reinforcement ratio of transverse reinforcement
MinVertReinfPercWall = 79
-
Minimal reinforcement ratio of vertical reinforcement
ModulusType = 61
-
Type of E-modulus, which is used in calculations
ModulusTypeLongTermEffects = 137
-
Type of E-modulus, which is used in calculations of long-term effects
NA_1_Wmax_Ec2 = 150
-
NA_1_Wmax_Ec2
NA_2_4_2_2_Gamma_p_fav = 66
-
Partial factors for prestress The value of P,fav for use in a Country may be found in its National Annex. The recommended value for persistent and transient design situations is 1,0. This value may also be used for fatigue verification
NA_2_4_2_2_Gamma_p_unfav = 67
-
Partial factors for prestress The value of P,unfav in the stability limit state for use in a Country may be found in its National Annex. The recommended value for global analysis is 1,3.
NA_5_10_2_1_1_K1 = 98
-
maximum tendon stress coeff k1 in 5.10.2.1(1)P
NA_5_10_2_1_1_K2 = 99
-
maximum tendon stress coeff k2 in 5.10.2.1(1)P
NA_5_10_3_2_K7 = 100
-
maximum tendon stress coeff k7 in 5.10.3(2)
NA_5_10_3_2_K8 = 101
-
maximum tendon stress coeff k8 in 5.10.3(2)
NA_5_10_9_r_inf_post = 65
-
Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:
- for post-tensioning with bonded tendons: rsup = 1,10 and rinf = 0,90
- when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_10_9_r_inf_pre = 63
-
Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:
- for pre-tensioning or unbonded tendons: rsup = 1,05 and rinf = 0,95
- when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_10_9_r_sup_post = 64
-
Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:
- for post-tensioning with bonded tendons: rsup = 1,10 and rinf = 0,90
- when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_10_9_r_sup_pre = 62
-
Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:
- for pre-tensioning or unbonded tendons: rsup = 1,05 and rinf = 0,95
- when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_2_5_Theta0 = 55
-
The the basic value of imperfections (See 5.2 (5)).
NA_5_5_K1 = 140
-
returns K1 coefficient according to 5.5 EN 1992-1-1
NA_5_5_K2 = 141
-
returns K2 coefficient according to 5.5 EN 1992-1-1
NA_5_5_K3 = 142
-
returns K3 coefficient according to 5.5 EN 1992-1-1
NA_5_5_K4 = 143
-
returns K4 coefficient according to 5.5 EN 1992-1-1
NA_5_5_K5 = 144
-
returns K5 coefficient according to 5.5 EN 1992-1-1
NA_5_5_K5_fck_BiggerThan_50MPa = 190
-
returns K5 coefficient according to DIN EN 1992-2/NA April 2013 NDP re 5.5 (4)
NA_5_5_K6 = 145
-
returns K6 coefficient according to 5.5 EN 1992-1-1
NA_5_5_K6_fck_BiggerThan_50MPa = 191
-
returns K5 coefficient according to DIN EN 1992-2/NA April 2013NDP re 5.5 (4)
NA_5_8_6_3_GammaCe = 56
-
Partial safety factor for second order effect design, see 5.8.6 (3).
NA_6_5_2_3_Ni = 113
-
coefficient ni - SaT
NA_6_5_4_4_K1 = 114
-
coefficient k1 - SaT
NA_6_5_4_4_K2 = 115
-
coefficient k2 - SaT
NA_6_5_4_4_K3 = 116
-
coefficient k3 - SaT
NA_7_2_K1 = 11
-
EN 1992-1-1 7.2 (2) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (2)
NA_7_2_K2 = 12
-
EN 1992-1-1 7.2 (3) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (3)
NA_7_2_K3 = 13
-
EN 1992-1-1 7.2 (5) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (5)
NA_7_2_K4 = 14
-
EN 1992-1-1 7.2 (5) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (5)
NA_7_2_K5 = 15
-
EN 1992-1-1 7.2 (5) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (5)
NA_7_3_1_DecompressionDistance = 68
-
The durability of prestressed members may be more critically affected by cracking. In the absence of more detailed requirements, it may be assumed that limiting the calculated crack widths to the values of wmax given in Table 7.1N, under the frequent combination of loads, will generally be satisfactory for prestressed concrete members. The decompression limit requires that all parts of the bonded tendons or duct lie at least 100 mm within concrete in compression
NA_7_3_1_Wmax_Ec2_1_1 = 10
-
NA_7_3_1_Wmax_Ec2_1_1
NA_7_3_1_Wmax_Ec2_2 = 73
-
NA_7_3_1_Wmax_Ec2_2
NA_7_3_4_K1 = 192
-
is a coefficient which takes account of the bond properties of the bonded reinforcement
NA_7_3_4_K2 = 193
-
is a coefficient which takes account of the distribution of strain
NA_7_3_4_K3 = 16
-
NA_7_3_4_K3
NA_7_3_4_K4 = 17
-
NA_7_3_4_K4
NA_8_3_2_MinDiameterOfMandrel = 103
-
minimal diameter of mandrel acc table 8.1N
NA_Alphacc_92_1_1 = 19
-
NA_Alphacc_92_1_1
NA_Alphacc_92_2 = 23
-
NA_Alphacc_92_2
NA_Alphaccpl_92_1_1 = 21
-
NA_Alphaccpl_92_1_1
NA_Alphact_92_1_1 = 20
-
NA_Alphact_92_1_1
NA_Alphact_92_2 = 24
-
NA_Alphact_92_2
NA_Alphactpl_92_1_1 = 22
-
NA_Alphactpl_92_1_1
NA_CoeffEpsudByEpsuk = 5
-
ration of design and characteristics strain limit - reinforcement
NA_CoeffEpsudByEpsuk_p = 6
-
ration of design and characteristics strain limit - prestressed reinforcement
NA_EN1992_3_7_3_1_112_x_min = 157
-
x lim crack width
NA_EN1992_3_CrackWidth = 158
-
crack width limitation
NA_EN1992_3_CrackWidth_XA2_XA3_XF2_XF3_XF4 = 206
-
crack width limitation
NA_GammaC = 2
-
partial factor for concrete for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaC_BLR = 198
-
BLR partial factor for concrete for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaCfat = 124
-
partial factor for concrete for fatigue - ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaFfat = 123
-
The partial factor for fatigue loads DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 6.8.4 (1)
NA_GammaS = 3
-
partial factor for reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaSP = 4
-
partial factor for prestressed reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaSP_BLR = 200
-
partial factor for prestressed reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaSPfat = 126
-
partial factor for fatigue - for prestressed reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaS_BLR = 199
-
BLR partial factor for reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_GammaSfat = 125
-
partial factor for reinforcement for fatigue - ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double
NA_J_3_2_K1 = 117
-
coefficient k1 - SaT bracket
NA_J_3_3_K2 = 118
-
coefficient k2 - SaT bracket
NA_K1Fatigue = 131
-
coefficient k1 for fatigue
NA_K2Fatigue = 166
-
6.8.4 (5) Pokud se použijí pravidla 6.8 pro vyhodnocení zbytkové životnosti existující konstrukce nebo pro posouzení potřeby jejího zesílení, pak pokud začala koroze, lze stanovit rozkmit napětí sníženým exponentem napětí k2 pro přímé a ohýbané pruty /// DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 6.8.4 (5)
NA_LimitCharacteristic = 92
-
limit deformation - characteristics deformation
NA_LimitInfrequent = 93
-
limit deformation - infrequent deformation
NA_LimitQuasiPermanent = 91
-
limit deformation - quasi-permanent deformation
NA_LoadDuration = 18
-
NA_LoadDuration
NA_NCyclesFatigue = 130
-
N fatigue cycles 6.8.7 Verification of concrete under compression or shear DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 6.8.7 (1)
NA_NN_112_Gamma_sd = 194
-
coefficient
NA_Table7_101DE_1992_2 = 173
-
NDP zu 7.3.1 (105) Es gelten Tabelle 7.101DE
NA_Table7_102DE_1992_2 = 174
-
NDP zu 7.3.1 (105) Es gelten Tabelle 7.102DE
NA_Table7_103DE_1992_2 = 177
-
NDP zu 7.3.1 (105) Es gelten Tabelle 7.103DE
NA_TableFatigue6101N = 129
-
table 6.101N for fatigue - parameters for reinforcement steel - Dutch annex
NA_TableFatigue63N = 127
-
table 6.3N for fatigue - parameters for reinforcement steel DIN EN 1992-1-1/NA:2011-01 April 2013 NCI re 6.8.4, Table 6.3N
NA_TableFatigue63N_1992_2 = 168
-
table 6.3N for fatigue - parameters for reinforcement steel DIN EN 1992-2/NA 2013 NCI re 6.8.4, Table 6.3N
NA_TableFatigue64N = 128
-
table 6.4N for fatigue - parameters for prestress steel DIN EN 1992-1-1/NA:2011-01 April 2013 NCI re 6.8.4, Table 6.4N
NA_TableFatigue64N_1992_2 = 169
-
table 6.4N for fatigue - parameters for prestress steel DIN EN 1992-2/NA April 2013 NCI re 6.8.4, Table 6.4N
NA_k_p = 57
-
ductility factor for prestressed reinforcement
NeglectRedistributionOfMoments = 149
-
Neglect redistribution of moments My, Mz, if the ratio My/Mz is less than 10%
NoResistanceOfConcreteInTension1D = 148
-
No resistance of concrete in tension - members 1D
NoResistanceOfConcreteInTension2D = 203
-
No resistance of concrete in tension - plates
NoTendonExclusion = 162
-
dont exclude tendons from calculation model of cross-section
NonlinearCreep = 151
-
calculation of non-linear creep
NumberPartsOfDM = 204
-
number of parts on design member
PlaneDiagramCount = 69
-
Number of the plane interaction diagrams
SaTMethodType = 119
-
type of SAT method
SetupTable45n1991_2 = 132
-
table 4.5(n) acc 1991-2 - Indicative number of heavy vehicles expected per year and per slow lane
SimplifiedCssModel = 197
-
Use simplified calculation model of cross-section (reinforcement bars in layers are substituted by rectangle polygon component)
StressLimit_TypeFctm = 48
-
stress limitation - type calculation of concrete stress limitation in tension
StrutAngleOptimalization = 155
-
calculate optimalization of strut angle in shear, torsion and interaction
SubintervalsPerDecade = 139
-
Minimal number of time nodes per decade
Table74N = 76
-
Values in table 74N
Table74N_1992_1_1 = 176
-
Values in table 74N
TableJointParameters = 136
-
6.2.5 (2) Parameters of joint
Theta = 25
-
Theta
ThetaMax = 27
-
ThetaMax
ThetaMin = 26
-
ThetaMin
Theta_c = 51
-
lateral shear - angle theta - compressed flange
Theta_max_f = 54
-
lateral shear - max angle theta
Theta_min_c = 53
-
lateral shear - min angle theta - compressed flange
Theta_min_t = 52
-
lateral shear - min angle theta - tensioned flange
Theta_t = 50
-
lateral shear - angle theta - tensioned flange
TypeOfInitialstateOfCSS = 153
-
TypeOfInitialstateOfCSS
TypeSLSCalculation = 202
-
set of SLS calculation 0 - both 1 - short-term 2 - long-term
UseGammalt = 72
-
The safety factor for long-term extrapolation of delayed strains, see Ec2-2 B.105. Is used for calculation of creep effect. The value Gamma lt is calculated.
UserValuesForShear = 75
-
User values for shear calculation - d and z
VestigalResistance = 161
-
Vestigal resistance
WeakenedByBars = 58
-
weakened by bars - all bars area is subtract for concrete area
WeakenedByDucts = 60
-
weakened by ducts - all ducts area is subtract for concrete area
WeakenedByTendons = 59
-
weakened by tendons - all tendons area is subtract for concrete area