Table of Contents

Enum SetupValueEc2

Namespace
IdeaRS.OpenModel.Concrete
Assembly
IdeaRS.OpenModel.dll

Setup value types Ec2

public enum SetupValueEc2

Fields

AllowCheckInAgeLess3Days = 152

true to allow check in concrete age less than 3 days

AlphaCw = 32

AlphaCw

AnchorageDetailType = 122

anchorage of reinforcement according to type

BLRPRecisionCheckValue = 201

precision of bridge load rating - check value

BentUpBarsReduction = 154

reduction coefficinet of bent-up bars

CalculateShrinkage = 205

calculate influence of shrinkage to stiffnesses

CalculateSrMaxAccUserSettings = 135

sr,max, is calculated according to user

CalculationOfStressLimitationK1 = 207

calculation of stress limitation k1

CalculationOfStressLimitationK2 = 208

calculation of stress limitation k2

CalculationOfStressLimitationK3 = 209

calculation of stress limitation k3

CheckCrackedCss = 74

Check cracks during shear calculation

CheckCrossSectionCrackedIfOneCracked_7_2_Chapter = 102

switch if the cross section should be calculated as cracked

CoeffCrdc = 28

CoeffCrdc

CoeffK1 = 29

CoeffK1

CoeffKl = 49

lateral shear - coefficient k (6.2.4 (6))

CoeffKp = 33

CoeffKp

CoeffNi = 104

strength reduction factor

CoeffNi1 = 31

CoeffNi1

CoeffNi1_EN2_2 = 183

coeff ni1 for EN2-2

CoeffVmin = 30

CoeffVmin

CoefficientOfTensionConcrete = 195

coefficient witch reduce the tension strength

CracWidthNationalAnnex = 160

use some annex specialities in common eurocode

CracksPassThrough = 159

CracksPassThrough

CrossSectionCrackedPlate = 134

on - the cross-section is calculated always as cracked

DecompressionLimit = 77

The decompression limit requires that all parts of the bonded tendons or duct lie at least 25 mm within concrete in compression for 1992-1-1

DecompressionLimit_2 = 78

The decompression limit requires that all parts of the bonded tendons or duct lie at least 25 mm within concrete in compression for 1992_2

DecompressionLimit_3 = 167

NCI re 7.3.1 (5) In order to keep within the decompression limit, it is required that the concrete surrounding the tendon is in compression over a width of 100 mm or 1/10 of the depth of section (whichever is greater). Stresses are to be checked in state II.

DetailingBracketMethodType = 120

calculation method of transversal reinforcement

DivisionStrain = 70

Division of the plane interaction diagram

EndOfCuring = 71

The age of the concrete (days) at the beginning of drying shrinkage (or swelling) in days. Normally this is at the end of curing.

Equation629 = 171

Equation 6.29 acc. to DIN NCI re 6.3.2 (4)

Equation631 = 172

Equation 6.31 acc. to DIN NCI re 6.3.2 (5)

FatigueJointCohesion = 175

Under fatigue or dynamic loads, the values for c in 6.2.5 (1) should be halved.

FatigueMethod = 133

6.8.7 Verification of concrete under compression or shear

FindOnly2DPlaneDeformation = 196

FindOnly2DPlaneDeformation

HighStrengthConcrete = 163

High strength concrete for DIN NCI re 3.1.2 (6)

ImperfectionDirection = 110

direction of imperfection for second order effect

IncreaseJointResistance = 170

the bearing capacity of the reinforcement crossing the joint due to shear friction (third term of the equation) may be increased to become ρ fyd (1,2 μ sin α + cos α).

InnerPerimeter = 164

Inner perimeter for DIN NCI re 3.1.4 (5)

InteractionDiagramCheckType = 9

InteractionDiagramCheckType

InteractionDiagramDivision = 112

division of interaction diagram for export

InteractionDiagramExportType = 146

type of interaction diagram for export

InterpolationCurve = 111

type of interpolate curce

IsSetMrForULSMNKappaDiagram = 156

IsSetMrForULSMNKappaDiagram

IsSetPrecissionForNullForces = 147

settings if null forces are checked with some precissions

IterationPrecission = 7

Iteration Precission

IterationSteps = 8

Iteration Steps

JointShearStressType = 138

Type of shear stress calculation

LimitCheckValue = 0

The limit check value, when check is over - check is not satisfactory

LimitDeflectionAdvanced = 106

limit value of deflection for deflection requrement advanced

LimitDeflectionNormal = 105

limit value of deflection for deflection requirement normal

LimitDeflectionValue = 108

limit value as value

LimitLeverArm = 165

Limit for lever arm acc. to DIN NCI re 6.2.3 (1)

LinearStiffnessForDeflection = 109

linear stiffness for deflection calculation - only for debug

MaxBentUpReinfDist = 178

maximum longitudinal spacing of bent-up bars

MaxDisplayCheckValue = 1

The infinity check value. This will be displayed when the check value equals to infinity or check wasn't calculated.

MaxHorReinfDistWall = 83

Maximal spacing of horizontal reinforcement

MaxHorReinfDistWall_EN2_2 = 188

maximum horizontal long reinf distance for EN2-2

MaxLengthOfZone = 107

maximum length of zone to divide member for stiffness calculation

MaxLongReinfDist = 37

maximum long reinf distance

MaxLongReinfPercBeam = 35

maximum long reinf percentage

MaxLongReinfPercBeam_EN2_2 = 185

maximum long reinf percentage for EN2-2

MaxLongReinfPercColumn = 43

maximum long reinf percentage

MaxMainReinfDistSlab = 89

Maximal spacing of main reinforcement

MaxMainReinfDistSlab_EN2_2 = 186

maximum main long reinf distance for EN2-2

MaxMainReinfPercSlab = 87

Maximal reinforcement ratio of main reinforcement

MaxReinfDistDeepBeam = 85

Maximal spacing of reinforcement

MaxShearReinfDistBeam = 40

maximum shear reinf distance

MaxShearReinfDistColumn = 46

maximum shear reinf distance

MaxShearReinfDistSlab = 180

maximum longitudinal spacing of successive series of links for slab

MaxShearReinfPercBeam = 39

maximum shear reinf percentage

MaxShearReinfTransDist = 41

maximum shear reinf trans distance

MaxShearReinfTransDistSlab = 181

maximum transverse spacing of shear reinforcement for slab

MaxTransReinfDistSlab = 90

Maximal spacing of transverse reinforcement

MaxTransReinfDistSlab_EN2_2 = 187

maximum transversal long reinf distance for EN2-2

MaxVertReinfDistWall = 81

Maximal spacing of vertical reinforcement

MaxVertReinfPercWall = 80

Maximal reinforcement ratio of vertical reinforcement

MinAnchLenShear = 121

minimum anchorage length of shear reinforcement

MinDuctHorDist = 97

Minimal horizontal distance of ducts

MinDuctVertDist = 96

Minimal vertical distance of ducts

MinHorReinfPercWall = 82

Minimal reinforcement ratio of horizontal reinforcement

MinLongReinfDiamColumn = 44

minimum long reinf diameter

MinLongReinfDist = 36

minimum long reinf distance

MinLongReinfPercBeam = 34

detailing beam minimum long reinf percentage

MinLongReinfPercBeam_EN2_2 = 184

minimum long reinf percentage for EN2-2

MinLongReinfPercColumn = 42

detailing column minimum long reinf percentage

MinMainReinfPercSlab = 86

Minimal reinforcement ratio of main reinforcement

MinNoBarCircColumn = 45

minimum number of bars of long reinf

MinReinfPercDeepBeam = 84

Minimal reinforcement ratio

MinReinfPercDeepBeam_EN2_2 = 189

minimum long reinf percentage for EN2-2

MinShearReinfDiamColumn = 47

minimum shear reinf diameter

MinShearReinfDiamColumn_EN2_2 = 182

minimum shear reinf diameter EN2-2

MinShearReinfPercBeam = 38

minimum shear reinf percentage

MinShearReinfPercSlab = 179

Minimal shear reinforcement percentage for slab

MinTendonHorDist = 95

Minimal horizontal distance of tendons

MinTendonVertDist = 94

Minimal vertical distance of tendons

MinTransReinfPercSlab = 88

Minimal reinforcement ratio of transverse reinforcement

MinVertReinfPercWall = 79

Minimal reinforcement ratio of vertical reinforcement

ModulusType = 61

Type of E-modulus, which is used in calculations

ModulusTypeLongTermEffects = 137

Type of E-modulus, which is used in calculations of long-term effects

NA_1_Wmax_Ec2 = 150

NA_1_Wmax_Ec2

NA_2_4_2_2_Gamma_p_fav = 66

Partial factors for prestress The value of 􀁊P,fav for use in a Country may be found in its National Annex. The recommended value for persistent and transient design situations is 1,0. This value may also be used for fatigue verification

NA_2_4_2_2_Gamma_p_unfav = 67

Partial factors for prestress The value of 􀁊P,unfav in the stability limit state for use in a Country may be found in its National Annex. The recommended value for global analysis is 1,3.

NA_5_10_2_1_1_K1 = 98

maximum tendon stress coeff k1 in 5.10.2.1(1)P

NA_5_10_2_1_1_K2 = 99

maximum tendon stress coeff k2 in 5.10.2.1(1)P

NA_5_10_3_2_K7 = 100

maximum tendon stress coeff k7 in 5.10.3(2)

NA_5_10_3_2_K8 = 101

maximum tendon stress coeff k8 in 5.10.3(2)

NA_5_10_9_r_inf_post = 65

Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:

  • for post-tensioning with bonded tendons: rsup = 1,10 and rinf = 0,90
  • when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_10_9_r_inf_pre = 63

Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:

  • for pre-tensioning or unbonded tendons: rsup = 1,05 and rinf = 0,95
  • when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_10_9_r_sup_post = 64

Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:

  • for post-tensioning with bonded tendons: rsup = 1,10 and rinf = 0,90
  • when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_10_9_r_sup_pre = 62

Effects of prestressing at serviceability limit state and limit state of fatigue The values of rsup and rinf for use in a Country may be found in its National Annex. The recommended values are:

  • for pre-tensioning or unbonded tendons: rsup = 1,05 and rinf = 0,95
  • when appropriate measures (e.g. direct measurements of pretensioning) are taken: rsup = rinf = 1,0.
NA_5_2_5_Theta0 = 55

The the basic value of imperfections (See 5.2 (5)).

NA_5_5_K1 = 140

returns K1 coefficient according to 5.5 EN 1992-1-1

NA_5_5_K2 = 141

returns K2 coefficient according to 5.5 EN 1992-1-1

NA_5_5_K3 = 142

returns K3 coefficient according to 5.5 EN 1992-1-1

NA_5_5_K4 = 143

returns K4 coefficient according to 5.5 EN 1992-1-1

NA_5_5_K5 = 144

returns K5 coefficient according to 5.5 EN 1992-1-1

NA_5_5_K5_fck_BiggerThan_50MPa = 190

returns K5 coefficient according to DIN EN 1992-2/NA April 2013 NDP re 5.5 (4)

NA_5_5_K6 = 145

returns K6 coefficient according to 5.5 EN 1992-1-1

NA_5_5_K6_fck_BiggerThan_50MPa = 191

returns K5 coefficient according to DIN EN 1992-2/NA April 2013NDP re 5.5 (4)

NA_5_8_6_3_GammaCe = 56

Partial safety factor for second order effect design, see 5.8.6 (3).

NA_6_5_2_3_Ni = 113

coefficient ni - SaT

NA_6_5_4_4_K1 = 114

coefficient k1 - SaT

NA_6_5_4_4_K2 = 115

coefficient k2 - SaT

NA_6_5_4_4_K3 = 116

coefficient k3 - SaT

NA_7_2_K1 = 11

EN 1992-1-1 7.2 (2) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (2)

NA_7_2_K2 = 12

EN 1992-1-1 7.2 (3) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (3)

NA_7_2_K3 = 13

EN 1992-1-1 7.2 (5) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (5)

NA_7_2_K4 = 14

EN 1992-1-1 7.2 (5) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (5)

NA_7_2_K5 = 15

EN 1992-1-1 7.2 (5) DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 7.2 (5)

NA_7_3_1_DecompressionDistance = 68

The durability of prestressed members may be more critically affected by cracking. In the absence of more detailed requirements, it may be assumed that limiting the calculated crack widths to the values of wmax given in Table 7.1N, under the frequent combination of loads, will generally be satisfactory for prestressed concrete members. The decompression limit requires that all parts of the bonded tendons or duct lie at least 100 mm within concrete in compression

NA_7_3_1_Wmax_Ec2_1_1 = 10

NA_7_3_1_Wmax_Ec2_1_1

NA_7_3_1_Wmax_Ec2_2 = 73

NA_7_3_1_Wmax_Ec2_2

NA_7_3_4_K1 = 192

is a coefficient which takes account of the bond properties of the bonded reinforcement

NA_7_3_4_K2 = 193

is a coefficient which takes account of the distribution of strain

NA_7_3_4_K3 = 16

NA_7_3_4_K3

NA_7_3_4_K4 = 17

NA_7_3_4_K4

NA_8_3_2_MinDiameterOfMandrel = 103

minimal diameter of mandrel acc table 8.1N

NA_Alphacc_92_1_1 = 19

NA_Alphacc_92_1_1

NA_Alphacc_92_2 = 23

NA_Alphacc_92_2

NA_Alphaccpl_92_1_1 = 21

NA_Alphaccpl_92_1_1

NA_Alphact_92_1_1 = 20

NA_Alphact_92_1_1

NA_Alphact_92_2 = 24

NA_Alphact_92_2

NA_Alphactpl_92_1_1 = 22

NA_Alphactpl_92_1_1

NA_CoeffEpsudByEpsuk = 5

ration of design and characteristics strain limit - reinforcement

NA_CoeffEpsudByEpsuk_p = 6

ration of design and characteristics strain limit - prestressed reinforcement

NA_EN1992_3_7_3_1_112_x_min = 157

x lim crack width

NA_EN1992_3_CrackWidth = 158

crack width limitation

NA_EN1992_3_CrackWidth_XA2_XA3_XF2_XF3_XF4 = 206

crack width limitation

NA_GammaC = 2

partial factor for concrete for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaC_BLR = 198

BLR partial factor for concrete for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaCfat = 124

partial factor for concrete for fatigue - ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaFfat = 123

The partial factor for fatigue loads DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 6.8.4 (1)

NA_GammaS = 3

partial factor for reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaSP = 4

partial factor for prestressed reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaSP_BLR = 200

partial factor for prestressed reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaSPfat = 126

partial factor for fatigue - for prestressed reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaS_BLR = 199

BLR partial factor for reinforcement for ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_GammaSfat = 125

partial factor for reinforcement for fatigue - ULS accidental design situation 2.4.2.4(1) Setup2Values, double, double

NA_J_3_2_K1 = 117

coefficient k1 - SaT bracket

NA_J_3_3_K2 = 118

coefficient k2 - SaT bracket

NA_K1Fatigue = 131

coefficient k1 for fatigue

NA_K2Fatigue = 166

6.8.4 (5) Pokud se použijí pravidla 6.8 pro vyhodnocení zbytkové životnosti existující konstrukce nebo pro posouzení potřeby jejího zesílení, pak pokud začala koroze, lze stanovit rozkmit napětí sníženým exponentem napětí k2 pro přímé a ohýbané pruty /// DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 6.8.4 (5)

NA_LimitCharacteristic = 92

limit deformation - characteristics deformation

NA_LimitInfrequent = 93

limit deformation - infrequent deformation

NA_LimitQuasiPermanent = 91

limit deformation - quasi-permanent deformation

NA_LoadDuration = 18

NA_LoadDuration

NA_NCyclesFatigue = 130

N fatigue cycles 6.8.7 Verification of concrete under compression or shear DIN EN 1992-1-1/NA:2011-01 April 2013 NDP re 6.8.7 (1)

NA_NN_112_Gamma_sd = 194

coefficient

NA_Table7_101DE_1992_2 = 173

NDP zu 7.3.1 (105) Es gelten Tabelle 7.101DE

NA_Table7_102DE_1992_2 = 174

NDP zu 7.3.1 (105) Es gelten Tabelle 7.102DE

NA_Table7_103DE_1992_2 = 177

NDP zu 7.3.1 (105) Es gelten Tabelle 7.103DE

NA_TableFatigue6101N = 129

table 6.101N for fatigue - parameters for reinforcement steel - Dutch annex

NA_TableFatigue63N = 127

table 6.3N for fatigue - parameters for reinforcement steel DIN EN 1992-1-1/NA:2011-01 April 2013 NCI re 6.8.4, Table 6.3N

NA_TableFatigue63N_1992_2 = 168

table 6.3N for fatigue - parameters for reinforcement steel DIN EN 1992-2/NA 2013 NCI re 6.8.4, Table 6.3N

NA_TableFatigue64N = 128

table 6.4N for fatigue - parameters for prestress steel DIN EN 1992-1-1/NA:2011-01 April 2013 NCI re 6.8.4, Table 6.4N

NA_TableFatigue64N_1992_2 = 169

table 6.4N for fatigue - parameters for prestress steel DIN EN 1992-2/NA April 2013 NCI re 6.8.4, Table 6.4N

NA_k_p = 57

ductility factor for prestressed reinforcement

NeglectRedistributionOfMoments = 149

Neglect redistribution of moments My, Mz, if the ratio My/Mz is less than 10%

NoResistanceOfConcreteInTension1D = 148

No resistance of concrete in tension - members 1D

NoResistanceOfConcreteInTension2D = 203

No resistance of concrete in tension - plates

NoTendonExclusion = 162

dont exclude tendons from calculation model of cross-section

NonlinearCreep = 151

calculation of non-linear creep

NumberPartsOfDM = 204

number of parts on design member

PlaneDiagramCount = 69

Number of the plane interaction diagrams

SaTMethodType = 119

type of SAT method

SetupTable45n1991_2 = 132

table 4.5(n) acc 1991-2 - Indicative number of heavy vehicles expected per year and per slow lane

SimplifiedCssModel = 197

Use simplified calculation model of cross-section (reinforcement bars in layers are substituted by rectangle polygon component)

StressLimit_TypeFctm = 48

stress limitation - type calculation of concrete stress limitation in tension

StrutAngleOptimalization = 155

calculate optimalization of strut angle in shear, torsion and interaction

SubintervalsPerDecade = 139

Minimal number of time nodes per decade

Table74N = 76

Values in table 74N

Table74N_1992_1_1 = 176

Values in table 74N

TableJointParameters = 136

6.2.5 (2) Parameters of joint

Theta = 25

Theta

ThetaMax = 27

ThetaMax

ThetaMin = 26

ThetaMin

Theta_c = 51

lateral shear - angle theta - compressed flange

Theta_max_f = 54

lateral shear - max angle theta

Theta_min_c = 53

lateral shear - min angle theta - compressed flange

Theta_min_t = 52

lateral shear - min angle theta - tensioned flange

Theta_t = 50

lateral shear - angle theta - tensioned flange

TypeOfInitialstateOfCSS = 153

TypeOfInitialstateOfCSS

TypeSLSCalculation = 202

set of SLS calculation 0 - both 1 - short-term 2 - long-term

UseGammalt = 72

The safety factor for long-term extrapolation of delayed strains, see Ec2-2 B.105. Is used for calculation of creep effect. The value Gamma lt is calculated.

UserValuesForShear = 75

User values for shear calculation - d and z

VestigalResistance = 161

Vestigal resistance

WeakenedByBars = 58

weakened by bars - all bars area is subtract for concrete area

WeakenedByDucts = 60

weakened by ducts - all ducts area is subtract for concrete area

WeakenedByTendons = 59

weakened by tendons - all tendons area is subtract for concrete area